Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613023

RESUMO

BACKGROUND: Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS: A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS: Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.


Assuntos
Microalgas , Xantofilas , Humanos , Feminino , Sobrepeso/terapia , Qualidade de Vida , Redução de Peso , Suplementos Nutricionais
2.
Mar Drugs ; 22(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535440

RESUMO

The microalgae Phaeodactylum tricornutum (PT) is distinguished by its rich nutrient profile, characterized by well-documented neuroprotective activities, including fucoxanthin (FX), a major carotenoid and polyunsaturated omega-3 fatty acids (n-3 PUFA). The current study aims to evaluate the protective effects of a standardized extract of PT (Mi136) containing 2% FX on cognitive function, oxidative stress, and inflammation parameters in a mouse model of accelerated aging. Seventy-two (72) male mice were randomly assigned to the blank control group (BC), negative control group (NC), and four similar microalgae extract of PT groups (branded as BrainPhyt™) with different human equivalent doses to evaluate potential dose-response effects. From day 01 to day 51, mice in the BC group were injected with a 0.9% normal saline solution, while mice in all other groups were subcutaneously injected with D-galactose (D-Gal) at a dose of 150 mg/kg once per day, five days per week. Results indicated that, for the three higher microalgae extract of PT dose groups, spatial cognitive function, swim latency, and step-through latency impairments induced by chronic D-Gal intoxication were significantly and fully inhibited, with mean values similar to those in the BC group during each day of testing. Similar benefits were observed in biochemical analysis, specifically regarding brain and plasma levels of lipid peroxidation, TNF-α, and IL-6 markers. These data underscore the positive effects of a standardized extract of PT containing 2% FX on cognitive function parameters such as spatial working memory, long-term memory, and short-term memory through the regulation of oxidative stress and inflammation pathways.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Ômega-3 , Microalgas , Humanos , Masculino , Animais , Camundongos , Galactose , Cognição , Inflamação
3.
Nutrients ; 15(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111136

RESUMO

BACKGROUND: Esports competitive gaming requires selective visual attention, memory, quick judgment, and an ability to sustain psychomotor performance over time. Fucoxanthin is a carotenoid, found in specific microalgae varieties such as Phaeodactylum tricornutum (PT), that has been purported to possess nootropic and neuroprotective effects through its anti-inflammatory and antioxidant properties. This study evaluated whether acute and 30-day supplementation of an extract of PT from microalgae combined with guarana (a natural source of caffeine) affects cognitive function in gamers. MATERIALS AND METHODS: In a double-blind, placebo-controlled manner, 61 experienced gamers (21.7 ± 4.1 years, 73 ± 13 kg) were randomly assigned to ingest a placebo (PL), a low-dose (LD) supplement containing 440 mg of PT extract including 1% fucoxanthin +500 mg of guarana containing 40-44 mg caffeine (MicroPhyt™, Microphyt, Baillargues, FR), or a high-dose (HD) supplement containing 880 mg of PT extract +500 mg of guarana for 30 days. At baseline, cognitive function tests were administered before supplementation, 15 min post-supplementation, and after 60 min of competitive gameplay with participants' most played video game. Participants continued supplementation for 30 days and then repeated pre-supplementation and post-gaming cognitive function tests. General linear model univariate analyses with repeated measures and changes from baseline with 95% confidence intervals were used to analyze data. RESULTS: There was some evidence that acute and 30-day ingestion of the PT extract from microalgae with guarana improved reaction times, reasoning, learning, executive control, attention shifting (cognitive flexibility), and impulsiveness. While some effects were seen after acute ingestion, the greatest impact appeared after 30 days of supplementation, with some benefits seen in the LD and HD groups. Moreover, there was evidence that both doses of the PT extract from microalgae with guarana may support mood state after acute and 30-day supplementation. Registered clinical trial #NCT04851899.


Assuntos
Microalgas , Paullinia , Jogos de Vídeo , Humanos , Cafeína/farmacologia , Cognição , Suplementos Nutricionais , Método Duplo-Cego
4.
Oxid Med Cell Longev ; 2019: 5496346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178967

RESUMO

BACKGROUND: Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is not fully reversed by exercise training. Antioxidants are critical for muscle homeostasis and adaptation to training. However, COPD patients experience antioxidant deficits that worsen after training and might impact their muscle response to training. Nutritional antioxidant supplementation in combination with pulmonary rehabilitation (PR) would further improve muscle function, oxidative stress, and PR outcomes in COPD patients. METHODS: Sixty-four COPD patients admitted to inpatient PR were randomized to receive 28 days of oral antioxidant supplementation targeting the previously observed deficits (PR antioxidant group; α-tocopherol: 30 mg/day, ascorbate: 180 mg/day, zinc gluconate: 15 mg/day, selenomethionine: 50 µg/day) or placebo (PR placebo group). PR consisted of 24 sessions of moderate-intensity exercise training. Changes in muscle endurance (primary outcome), oxidative stress, and PR outcomes were assessed. RESULTS: Eighty-one percent of the patients (FEV1 = 58.9 ± 20.0%pred) showed at least one nutritional antioxidant deficit. Training improved muscle endurance in the PR placebo group (+37.4 ± 45.1%, p < 0.001), without additional increase in the PR antioxidant group (-6.6 ± 11.3%; p = 0.56). Nevertheless, supplementation increased the α-tocopherol/γ-tocopherol ratio and selenium (+58 ± 20%, p < 0.001, and +16 ± 5%, p < 0.01, respectively), muscle strength (+11 ± 3%, p < 0.001), and serum total proteins (+7 ± 2%, p < 0.001), and it tended to increase the type I fiber proportion (+32 ± 17%, p = 0.07). The prevalence of muscle weakness decreased in the PR antioxidant group only, from 30.0 to 10.7% (p < 0.05). CONCLUSIONS: While the primary outcome was not significantly improved, COPD patients demonstrate significant improvements of secondary outcomes (muscle strength and other training-refractory outcomes), suggesting a potential "add-on" effect of the nutritional antioxidant supplementation (vitamins C and E, zinc, and selenium) during PR. This trial is registered with NCT01942889.


Assuntos
Suplementos Nutricionais/análise , Pulmão/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
J Hematol ; 8(2): 55-59, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300444

RESUMO

BACKGROUND: Cachexia is defined as an involuntary loss of weight, characterized by a loss of skeletal muscle mass with or without fat mass loss. It increases mortality risk and decreases quality of life in patients with lymphoma or myeloma. Early markers of cachexia are not identified. The objective of this work was to identify risk factor of cachexia in a cohort of patients with hematological malignancies to develop strategies to prevent cachexia and its consequences. METHODS: Clinical and biological parameters were collected before and at the end of the treatment. Quantification of weight loss during cachexia was performed by the method of Martin. Clinical responses to treatment of patients with lymphoma or myeloma were monitored. RESULTS: Thirty-eight percent of the 145 patients enrolled were cachectic at the end of treatment. Classical prognostic disease scores at the time of diagnosis seemed to be not associated with cachexia observed at the end of treatment. Only C-reactive protein (CRP) > 54 mg/L seemed to be a risk factor of cachexia (P = 0.023, odds ratio (OR): 5.94 (1.55 - 39.14), confidence interval (CI): 1.55 - 39.14). Those results were confirmed by bootstrap analysis. CONCLUSION: This study highlights that high CRP level at diagnosis seems to be a risk factor for cachexia during treatment, permitting to identify patients at risk and in future to implement preventive strategies.

6.
J Cell Physiol ; 233(12): 9629-9639, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29943813

RESUMO

The proteolytic autophagy pathway is enhanced in the lower limb muscles of patients with chronic obstructive pulmonary disease (COPD). Reactive oxygen species (ROS) have been shown to regulate autophagy in the skeletal muscles, but the role of oxidative stress in the muscle autophagy of patients with COPD is unknown. We used cultured myoblasts and myotubes from the quadriceps of eight healthy subjects and twelve patients with COPD (FEV1% predicted: 102.0% and 32.0%, respectively; p < 0.0001). We compared the autophagosome formation, the expression of autophagy markers, and the autophagic flux in healthy subjects and the patients with COPD, and we evaluated the effects of the 3-methyladenine (3-MA) autophagy inhibitor on the atrophy of COPD myotubes. Autophagy was also assessed in COPD myotubes treated with an antioxidant molecule, ascorbic acid. Autophagosome formation was increased in COPD myoblasts and myotubes (p = 0.011; p < 0.001), and the LC3 2/LC3 1 ratio (p = 0.002), SQSTM1 mRNA and protein expression (p = 0.023; p = 0.007), BNIP3 expression (p = 0.031), and autophagic flux (p = 0.002) were higher in COPD myoblasts. Inhibition of autophagy with 3-MA increased the COPD myotube diameter (p < 0.001) to a level similar to the diameter of healthy subject myotubes. Treatment of COPD myotubes with ascorbic acid decreased ROS concentration (p < 0.001), ROS-induced protein carbonylation (p = 0.019), the LC3 2/LC3 1 ratio (p = 0.037), the expression of SQSTM1 (p < 0.001) and BNIP3 (p < 0.001), and increased the COPD myotube diameter (p < 0.001). Thus, autophagy signaling is enhanced in cultured COPD muscle cells. Furthermore, the oxidative stress level contributes to the regulation of autophagy, which is involved in the atrophy of COPD myotubes in vitro.


Assuntos
Autofagia , Células Musculares/patologia , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Idoso , Ácido Ascórbico/farmacologia , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Células Musculares/efeitos dos fármacos , Células Musculares/ultraestrutura , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Atrofia Muscular/patologia , Mioblastos/efeitos dos fármacos , Mioblastos/patologia , Mioblastos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura
7.
Int J Chron Obstruct Pulmon Dis ; 11: 2349-2357, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703345

RESUMO

BACKGROUND AND AIMS: Targeting the early mechanisms in exercise-induced arterial hypertension (which precedes resting arterial hypertension in its natural history) may improve cardiovascular morbidity and mortality in COPD patients. Capillary rarefaction, an early event in COPD before vascular remodeling, is a potential mechanism of exercise-induced and resting arterial hypertension. Impaired training-induced capillarization was observed earlier in COPD patients; thus, this study compares the changes in blood pressure (BP) during exercise in COPD patients and matches control subjects (CSs) after a similar exercise training program, in relationship with muscle capillarization. METHODS: Resting and maximal exercise diastolic pressure (DP) and systolic pressure (SP) were recorded during a standardized cardiopulmonary exercise test, and a quadriceps muscle biopsy was performed before and after training. RESULTS: A total of 35 CSs and 49 COPD patients (forced expiratory volume in 1 second =54%±22% predicted) completed a 6-week rehabilitation program and improved their symptom-limited maximal oxygen uptake (VO2SL: 25.8±6.1 mL/kg per minute vs 27.9 mL/kg per minute and 17.0±4.7 mL/kg per minute vs 18.3 mL/kg per minute; both P<0.001). The improvement in muscle capillary-to-fiber (C/F) ratio was significantly greater in CSs vs COPD patients (+11%±9% vs +23%±21%; P<0.05). Although maximal exercise BP was reduced in CSs (DP: 89±10 mmHg vs 85±9 mmHg; P<0.001/SP: 204±25 mmHg vs 196±27 mmHg; P<0.05), it did not change in COPD patients (DP: 94±14 mmHg vs 97±16 mmHg; P=0.46/SP: 202±27 mmHg vs 208±24 mmHg; P=0.13). The change in muscle C/F ratio was negatively correlated with maximal exercise SP in CSs and COPD patients (r=-0.41; P=0.02). CONCLUSION: COPD patients showed impaired training-induced BP adaptation related to a change in muscle capillarization, suggesting the possibility of blunted angiogenesis.


Assuntos
Pressão Sanguínea , Capilares/fisiopatologia , Terapia por Exercício/métodos , Hipertensão/fisiopatologia , Microcirculação , Neovascularização Fisiológica , Doença Pulmonar Obstrutiva Crônica/terapia , Músculo Quadríceps/irrigação sanguínea , Adaptação Fisiológica , Idoso , Ciclismo , Biópsia , Estudos de Casos e Controles , Teste de Esforço , Terapia por Exercício/efeitos adversos , Tolerância ao Exercício , Feminino , Volume Expiratório Forçado , França , Humanos , Hipertensão/diagnóstico , Hipertensão/etiologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fluxo Sanguíneo Regional , Fatores de Tempo , Resultado do Tratamento , Caminhada
8.
PLoS One ; 11(8): e0160092, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27526027

RESUMO

Oxidative stress is thought to be one of the most important mechanisms implicated in the muscle wasting of chronic obstructive pulmonary disease (COPD) patients, but its role has never been demonstrated. We therefore assessed the effects of both pro-oxidant and antioxidant treatments on the oxidative stress levels and atrophic signaling pathway of cultured COPD myotubes. Treatment of cultured COPD myotubes with the pro-oxidant molecule H2O2 resulted in increased ROS production (P = 0.002) and protein carbonylation (P = 0.050), in association with a more pronounced atrophy of the myotubes, as reflected by a reduced diameter (P = 0.003), and the activated expression of atrophic markers MuRF1 and FoxO1 (P = 0.022 and P = 0.030, respectively). Conversely, the antioxidant molecule ascorbic acid induced a reduction in ROS production (P<0.001) and protein carbonylation (P = 0.019), and an increase in the myotube diameter (P<0.001) to a level similar to the diameter of healthy subject myotubes, in association with decreased expression levels of MuRF1, atrogin-1 and FoxO1 (P<0.001, P = 0.002 and P = 0.042, respectively). A significant negative correlation was observed between the variations in myotube diameter and the variations in the expression of MuRF1 after antioxidant treatment (P = 0.047). Moreover, ascorbic acid was able to prevent the H2O2-induced atrophy of COPD myotubes. Last, the proteasome inhibitor MG132 restored the basal atrophy level of the COPD myotubes and also suppressed the H2O2-induced myotube atrophy. These findings demonstrate for the first time the involvement of oxidative stress in the atrophy of COPD peripheral muscle cells in vitro, via the FoxO1/MuRF1/atrogin-1 signaling pathway of the ubiquitin/proteasome system.


Assuntos
Proteína Forkhead Box O1/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/complicações , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Idoso , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Leupeptinas/farmacologia , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Oxid Med Cell Longev ; 2015: 201843, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167238

RESUMO

Oxidative stress (OS) plays a key role in the muscle impairment and exercise capacity of COPD patients. However, the literature reveals that systemic OS markers show great heterogeneity, which may hinder the prescription of effective antioxidant supplementation. This study therefore aimed to identify OS markers imbalance of COPD patients, relative to validated normal reference values, and to investigate the possibility of systemic OS profiles. We measured systemic enzymatic/nonenzymatic antioxidant and lipid peroxidation (LP) levels in 54 stable COPD patients referred for a rehabilitation program. The main systemic antioxidant deficits in these patients concerned vitamins and trace elements. Fully 89% of the COPD patients showed a systemic antioxidant imbalance which may have caused the elevated systemic LP levels in 69% of them. Interestingly, two patient profiles (clusters 3 and 4) had a more elevated increase in LP combined with increased copper and/or decreased vitamin C, GSH, and GPx. Further analysis revealed that the systemic LP level was higher in COPD women and associated with exercise capacity. Our present data therefore support future supplementations with antioxidant vitamins and trace elements to improve exercise capacity, but COPD patients will probably show different positive responses.


Assuntos
Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Ácido Ascórbico/sangue , Biomarcadores/sangue , Cobre/sangue , Exercício Físico , Feminino , Glutationa/sangue , Glutationa Peroxidase/sangue , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fatores Sexuais
11.
J Appl Physiol (1985) ; 115(3): 346-54, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558383

RESUMO

Skeletal muscle atrophy is a major systemic impairment in chronic diseases. Yet its determinants have been hard to identify because a clear research definition has not been agreed upon. The reduction in muscle fiber cross-sectional area (CSA) is a widely acknowledged marker of muscle atrophy, but no reference values for the muscle fiber CSA at the age of the onset of chronic disease have ever been published. Thus, we aimed to systematically review the studies providing data on fiber CSA and fiber type proportion in the vastus lateralis of the quadriceps of healthy subjects (age >40 yr) and then to pool and analyze the data from the selected studies to determine reference values for fiber CSA. We followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and identified 19 studies, including 423 subjects that matched the inclusion criteria. On the basis of fiber type and gender, the mean fiber CSA and the lower limits of normal (LLNs) were (%type I*60) + 1,743 µm(2) and (%type I*60) - 718 µm(2), respectively, for men; and (%type I*70) + 139 µm(2) and (%type I*70) - 1,485 µm(2), respectively, for women. There was no significant heterogeneity among subgroups of fiber type and gender. The pooled type I fiber proportion was 50.3% (LLN = 32.9%). In multivariate analysis, fiber CSA was significantly correlated with Vo2 peak (r = 190.92; P = 0.03), and type I fiber proportion was correlated with age (r = -0.024; P = 0.005), body mass index (r = 0.096; P = 0.005), and Vo2 peak (r = -0.053; P = 0.005). Our metaanalysis of a homogeneous set of studies is the first to provide valuable LLNs for fiber CSA according to fiber type and gender. This analysis will be improved by prospective assessment in well-characterized healthy subjects.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Envelhecimento/fisiologia , Algoritmos , Limiar Anaeróbio/fisiologia , Índice de Massa Corporal , Interpretação Estatística de Dados , Bases de Dados Factuais , Feminino , Humanos , Perna (Membro)/anatomia & histologia , Masculino , Pessoa de Meia-Idade , Fibras Musculares de Contração Lenta , Valores de Referência , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...